a numerical technique based on operational matrices for solving nonlinear integro-differential equations
Authors
abstract
this paper presents a computational method for solving two types of integro-differential equations, system of nonlinear high order volterra-fredholm integro-differential equation(vfides) and nonlinear fractional order integro-differential equations. our tools for this aims is operational matrices of integration and fractional integration. by this method the given problems reduce to solve a system of algebraic equations. illustrative examples are included to demonstrate the efficiency and high accuracy of the method.
similar resources
Computational method based on triangular operational matrices for solving nonlinear stochastic differential equations
In this article, a new numerical method based on triangular functions for solving nonlinear stochastic differential equations is presented. For this, the stochastic operational matrix of triangular functions for It^{o} integral are determined. Computation of presented method is very simple and attractive. In addition, convergence analysis and numerical examples that illustrate accuracy and eff...
full textA Numerical Scheme for Solving Nonlinear Fractional Volterra Integro-Differential Equations
In this paper, a Bernoulli pseudo-spectral method for solving nonlinear fractional Volterra integro-differential equations is considered. First existence of a unique solution for the problem under study is proved. Then the Caputo fractional derivative and Riemman-Liouville fractional integral properties are employed to derive the new approximate formula for unknown function of the problem....
full textJacobi Operational Matrix Approach for Solving Systems of Linear and Nonlinear Integro-Differential Equations
This paper aims to construct a general formulation for the shifted Jacobi operational matrices of integration and product. The main aim is to generalize the Jacobi integral and product operational matrices to the solving system of Fredholm and Volterra integro--differential equations which appear in various fields of science such as physics and engineering. The Operational matr...
full textA numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method
In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.
full textNumerical approximation based on the Bernouli polynomials for solving Volterra integro-differential equations of high order
In this article, an applied matrix method, which is based on Bernouli Polynomials, has been presented to find approximate solutions of high order Volterra integro-differential equations. Through utilizing this approach, the proposed equations reduce to a system of algebric equations with unknown Bernouli coefficients. A number of numerical illustrations have been solved to assert...
full textA numerical method for solving delay-fractional differential and integro-differential equations
This article develops a direct method for solving numerically multi delay-fractional differential and integro-differential equations. A Galerkin method based on Legendre polynomials is implemented for solving linear and nonlinear of equations. The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations. A conver...
full textMy Resources
Save resource for easier access later
Journal title:
iranian journal of numerical analysis and optimizationجلد ۴، شماره ۱، صفحات ۴۱-۰
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023